Monday, December 21, 2009

Which consecutive whole numbers give the sum of 91?

We're looking for two consecutive numbers. If we let the first one be x, then the second, which is one after the first, would be x + 1.





Since we're concerned with the SUM of the whole numbers, we can assume that:





x + (x+1) = 91.





Solving for x, we get:





x + (x+1) = 91


2x + 1 = 91


2x = 90


x = 45.





So the first number, x, is 45; that means that the second number, x + 1, = 45+1 = 46.





So your numbers are 45 and 46.Which consecutive whole numbers give the sum of 91?
45+46Which consecutive whole numbers give the sum of 91?
here's the real answer





let n equal the number of consecutive whole numbers.





for n=2 the formula is 91 = x + (x+1) = 2x + 1


for n=3 the formula is 91 = x + (x+ 1) + (x+2) = 3x + 3


for n=4 the formula is 91 = x + (x+1) + (x+2) + (x+3) = 4x +6


for n=5 the formula is 91 = 5x +10


for n=6 the formula is 91 = 6x + 15





therefore for all n the formula is





n


危 (n-1) + nx = 91


2
45 and 46 works


29 30 31 does not work


21 22 23 24 does not work


16 17 18 19 20 does not work


12 13 14 15 16 17 does not work
If you are looking for two numbers, then you just solve the algebraic formula





x + (x+1) = 91.





This is equivalent to:


2x + 1 = 91





Subtract 1 from both sides.





You get 2x = 90





Divide both sides by 2.





x = 45.





Therefore, your two consecutive numbers are 45 and 46 since they add up to a sum of 91.
there seems to be some missing information. u must specify how many consecutivse whole numbers are forming sum of 91
45, 46

No comments:

Post a Comment